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MODULAR FORMS WHICH BEHAVE LIKE THETA SERIES 

K. CHAKRABORTY, A. K. LAL, AND B. RAMAKRISHNAN 

ABSTRACT. In this paper, we determine all modular forms of weights 36 < k < 
56, 4 | k, for the full modular group SL2(Z) which behave like theta series, 
i.e., which have in their Fourier expansions, the constant term 1 and all other 
Fourier coefficients are non-negative rational integers. In fact, we give convex 
regions in 1R3 (resp. in 1R4) for the cases k = 36, 40 and 44 (resp. for the cases 
k = 48, 52 and 56). Corresponding to each lattice point in these regions, we 
get a modular form with the above property. As an application, we determine 
the possible exceptions of quadratic forms in the respective dimensions. 

1. INTRODUCTION 

The famous problem of investigating the number of representations of numbers 
by positive definite integral quadratic forms is dealt with the use of theta series 
attached to the corresponding quadratic form. This is one of the classical reasons 
for the study of modular forms. Following the works of Witt and Kneser, M. Ozeki 
[5] considered the problem of determining all modular forms in Mk (1) (which is the 
space of modular forms of weight k for the modular group SL2(Z)) (k = 12,16) 
which are theta series associated to positive definite, even, integral quadratic forms 
of 2k variables of determinant unity. Because of the difficulty in attacking this 
problem for k > 16 (the cases k = 4,8,12 being known already, (see [5]), Ozeki 
[5] considered a weakened form of the problem viz., determining all modular forms 
in Mk (1) (k = 12,16) which behave like theta series (in other words, which have 
constant term unity and all other Fourier coefficients in their q-expansions are 
non-negative rational integers). 

The results obtained by Ozeki have been extended for the cases k = 20,24,28,32 
(up to the case dimMk(1) = 3), using simpler methods, by M. Manickam and B. 
Ramakrishnan [2, 3]. These results are presented in the appendix. 

Though, in principle, the methods used in [2, 3] can be extended to higher 
dimensional cases, in this paper, we will explicitly solve the problem (getting the 
convex region determining the modular forms) for the cases dim Mk (1) = 4,5, 
i.e., for k = 36,40,44,48,52,56 using the Simplex method for solving a Linear 
Programming problem. 

We have used Mathematica for our computations. Mathematica is the trade 
mark of Wolfram Research Inc. We thank Ranjan Srivastava for his help related 
to Mathematica. We are grateful to the referee for pointing out the applications 
of our results, which helped us in determining the possible exceptions of integral 
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quadratic forms, on the lines of the work done by A. M. Odlyzko and N. J. A. 
Sloane [4]. We also thank the referee for his suggestions to include the previous 
results obtained by M. Manickam and the last author. 

2. PRELIMINARIES 

Let k be a natural number. Let us denote by Sk (1) the space of cusp forms 
of weight k for SL2 (Z). The following modular forms will mainly be used in our 
discussion. The first one is the normalized Eisenstein series Ek (Z) C Mk (1) (2 < 
k C 22) defined by 

00 

Ek(z) = I + Ak E Sk-l(n) 
n=1 

where q = e27riz Ak = 2k, with Bk being the k-th Bernoulli number. The 
other modular form is the well-known cusp form of weight 12 defined by 

00 00 

A(z) = q J7 (I - qn)24 = E 7(n)qn 
n=1 n=1 

where Tr(n) is the Ramanujan's function. 

3. THE CASES k = 36,40,44 

In these cases dim Mk (1) = 4. The space Mk (1) is spanned by Ek (Z) and 
fi,k(Z), 1 < i < 3, where 

00 

(1) fik(Z) = A/Ek-12i(Z) = Yai,kr(n)q, 1 < i < 3. 
n=i 

Let c/$k(Z) = 1 + Z??=1 ak(n)qn E Mk(1) be such that 

(2) ak(n) > 0; ak(n) E 2 for all n > 1. 

Then our problem is to find all )k (Z) satisfying (2). 
Letting ak(i) = Xk,i E 2) I < i < 3, we get 

3 

(3) ak(n) = AkBkr(n) + Z ji,k(n)Xk,i, 
i=1 

where aj, k(n) E 2, 1 < i < 3, n > 1, and Bkr(n) is defined by 

4 Bk (n) =k-1 (n) -al,k (n) - (k-1 (2) - al,k (2)) a2,k (n) 

-(k - 1 (3) - a2,k (3) - Jk - 1 (2)a2,k (3) + al ,k (2)a2,k (3)) a3,k (n). 

Since ak(i) = Xk,i E 2, 1 < i < 3 and ak(O) = 1, from Lemma A.1 of the appendix, 
we see that ak(n) E 2 for all n > 0. This implies that AkBk(n) E 2. 

Using the Simplex method for solving a Linear Programming problem, from (2) 
and (3) we get the following bounds for Xk,i, 

(5) 0 < Xk,i < 'ki, 

where Ik,i are given in the table below. 

k 'k,1 Ik,2 Ik,3 
36 43690641 1155820295703 1694328614487247 

(6) 40 136258892 8076880335394 16311261365557870 
44 719376585 154458199788843 295351327765479655 
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Let gk (z) E Sk(1) be a normalized Hecke eigenform. Then using the Ramanujan 
- Petersson estimate proved by Deligne, we have 

(7) jbk (n)j | 'X nk/ 

where gk(Z) = Z=i bk((n)qn 
Also we know that there exists a basis {gi,k(Z)I 1 < i < 3} of Sk(1) which are 

normalized Hecke eigenforms. Now expressing each fi,k(z) as a linear combina- 
tion of the basis elements gi,k(z) and using (7) we get estimates for the Fourier 
coefficients ai,k (n) as follows. 

(8) Iai,k(n)I < Ak ink/2, 

where 

k 36 k 40 k 44 
Ak,1 1.732881 Akj 1.742782 Ak,1 1.732488 
Ak,2 8.303377 x 10-6 Ak,2 3.648166 x 10-6 Ak,2 9.622303 x 10-7 

Ak,3 3.848747 x 10-9 Ak,3 8.112572 x 10-10 Ak,3 1.055753 x 10-10 

Using the bounds from the table (6) and the estimates (8), we can prove that 
ak(n) > 0 for- all n except for the following cases: 

(k, n) E {(36, 4), (36, 6), (36, 12); (40, 5), (40, 7), (40, 14); (44, 6), (44, 8), (44, 16)}. 

We have thus the following theorem. 

Theorem 3.1. ak(n) > 0 if and only if ak(ik) > O where 

1,2,3,4,6,12 if k = 36, 
ik= < 1,2,3,5,7,14 if k =40, 

k= 1,2,3,6,8,16 if k=44. 

Using again the Simplex method for solving a Linear Programming problem, we 
get the following theorem. 

Theorem 3.2. ak(ik) > 0 and ak(ik) E Z if and only if Xk,i (1 < i < 3) belong 
to the following convex region in JR3 determined by the following vertices: 

R36= {(0, 7.41833,10.84975), (0, 7.66048,0), (7.60347,12.06289,0), (7.64038,0,0), 

(7.63955,0,13.53880), (0,0, 7.93633), (7.57620,11.79038,15.22899), (0,0, 0)}; 

R40= {(0, 7.79332,11.44916), (0, 8.13741, 0), (8.10535,12.90724,0), (8.13436,0,0), 

(8.13372,0,14.61139), (0,0,8.77584), (8.09472,12.54750,16.21248), (0,0, 0)}; 

R44= {(0, 8.23571,12.09800), (0,8.85738,0), (8.77219,14.18881,0), (8.85695,0,0), 

(8.85646, 0,15.79362), (0, 0, 9.44320), (8.81136,13.60069,17.47033), (0,0, 0)}, 

where ik is as in Theorem 3.1 and the nonzero entries of the vertices are in logarithm 
to the base 10 computed till 5 places of decimal. 

Remark 3.1. A view of the convex region R44 is given in Figure 1. 
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Theorem 4.1. akr(n) > 0 if and only if ak(ik) > 0, where 

[1,2,3,4,5,7,9,10,19, k = 48, 

ik= 1,2,3,4,6,8,11,12,22, k = 52, 

1,2,3,4,7,9,13,26, k = 56. 

Theorem 4.2. ak(ik) > 0 and ak(ik) E Z if and only if Xk,j, (1 < j < 4), belong 
to a convex region, denoted by Rk, in R4, where ik is as in Theorem 4. 1. The 
regions Rk, 44 < k < 56, are given by the following vertices (the nonzero entries of 
the vertices are given in logarithm to the base 10 till 3 places of decimal). 

R48 = {(0, 0, , 0), (0, 0, 0, 9.77), (0,0,9.843,13.144), (0,9.524,13.682,14.767), 

(0, 9.521,13.682,0), (0,9.557,0,0), (9.384,0,0,0), (9.384,0,0,17.286), 

(9.429,15.097,19.148, 22.007), (9.408,14.885,18.782, 22.101), 

(9.385,0,16.809,0), (9.392,14.979,0, 0), (9.392,14.987,0,20.796), 

(9.423,14.975,19.138,0), (0,0,10.101,0), (0,9.007,12.902,16.221)}; 

R52 ={(0, 0, 0,10.785), (0,9.68,14.051,0), (0,0,10.596,0), (10.006, 0, 0,0), 

(0,0,10.276,13.785), (0,10.006,0,0), (5.443,11.645,15.681,19.218), 

(0,10.184,14.219,17.756), (10.023,16.032,0,0), (10.006,0,0,18.717), 

(0,10.031,0,16.404), (10.006,0,17.785,0), (10.006,15.687,20.06, 0), 

(10.006,0,17.463,20.974), (10.024,16.056,0,22.43), (0,0,0, 0)}; 

R56 {(0, 0, 0, 0), (0, 0, 0,11.615), (0, 0,10.664,14.361), (0, 0,11.032, 0), 

(0,10.68,0,17.509), (0,10.684,0,0), (0,10.688,14.875,18.608), 

(10.684,0,0,0), (0,10.818,15.395,0), (10.681,16.97,21.158,24.891), 

(10.682,16.964,0,23.793), (10.682,16.965,0,0), (10.683,17.103,21.68, 0), 

(10.684,0,18.409,22.109), (10.684, 0,0,20.05), (10.684,0,18.779, 0)}. 

5. APPLICATIONS 

In this section, we use our results of the earlier sections to determine the ex- 
ceptions of integral quadratic forms following [4]. We use similar notations as in 

[4]. 
Let f, denote an even unimodular positive definite quadratic form of dimension 

n. We assume that n is divisible by 8. Let T, (which denotes the exceptions for 
n) be the set of natural numbers a such that some fn does not represent 2a. The 
theta series of fn is 

a (Z) = ellfn (X 
x 

where the sum extends over all x = (x1,x2,- -Xn). Note that 0(z) E Mn/2(1) 
Writing 

00 

0(Z) =E an/2(m)q, 
m=O 
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where an/2 (m) is the number of times f,, represents 2m, it is clear that an/2 (m) > 0 
and we have the famous Witt's bound for an/2(1), namely, 

an/2(1) < 2n(nr- 1) if n > 16. 

In each dimension n, there is a unique theta series having the following Fourier 
expansion 

1 +0 *q+O0 * 2 + . . 0 . q[n/24] +.. 

the so-called extremal theta series. 

Remark 5.1. Though the cases upto dimension 72 were studied in [4], we have 
found a mistake in the example given in the paper [4] for the dimension 72 case. 
Moreover, the referee has pointed out an improvement in the dimension 56 case of 
[4]. We take this opportunity to thank the referee of the revised version, who has 
supplied the proof for the improvement of the dimension 56 case, for pointing out 
the mistakes in our examples (provided for our cases) given in an earlier version 
of the manuscript. While correcting our examples we have found another mistake 
in the example of [4] for the dimension 64 case and it turns out that one can get 
improvement in the dimension 64 case also. We, thus, consider here the cases from 
dimension 56 to dimension 112. 

Remark 5.2. Note that from our method, we get a modular form in Mk(l) cor- 
responding to each lattice point in the region Rk (36 < k < 56) which behaves 
like a theta series. We also note that our method gives the extremal theta series 
corresponding to the point (0,0,0) (resp. (0,0,0,0)) for the case 36 < k < 44 (resp. 
for the case 48 < k < 56). 

Remark 5.3. In the following sections we will be determining the possible excep- 
tions of quadratic forms of the respective variable and we do not know whether 
examples of quadratic forms with those exceptions exist or not. 

5.1. Improvement in 56 dimension. The example given in ([4, p.215]) corre- 
sponds to the point (810,10434006) which is a modular form of weight 28 behaving 
like theta series (for a proof see the Appendix below). It is interesting to observe 
that this cannot be a theta series attached to a quadratic form. The proof goes as 
follows: If a quadratic form represents 2, then it clearly represents 22 . 2 = 8. In 
other words, the corresponding theta series will have the property that its q4-th 
Fourier coefficient is non-zero whenever its q-th Fourier coefficient is non-zero. In 
this case it has been pointed out in [4] that a28(1) 0 and a28(4) = 0 do not inter- 
sect at a lattice point. Thus for 4 to be an exception, one should have a28(1) :4 0, 
which is impossible as shown above. We, therefore, conclude that 

(12) T56 C {1,2}. 

5.2. Improvement in 64 dimension. The point (24672,338215905) gives the 
example given in ([4, p.215]) (see Appendix for a proof). Observing the fact that 
the Fourier coefficients of the theta series (apart from the constant term) attached 
to a quadratic form are even integers, it will follow that the example cannot be a 
theta series (the q2 coefficient is odd) and above all it violates the theta bound, 
namely, a32(1) < 8064. We further observed that a32(5) = 0 does not have any 
lattice point inside the theta region (intersection of R32, which is described in the 
Appendix and a32(1) < 8064). Hence, we have 

(13) T64 C {1,2}. 
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5.3. Dimension 72. We have found that the example given in ([4, p.216]) for 
the exceptions 4 and 6 is wrong. In our case, the point (43659000, 714910316160, 
1962733030283070) will provide the above mentioned example and it turns out that 
the modular form corresponding to this point has a negative Fourier coefficient 
(12-th), which implies that the above point lies outside the region R36. In fact, 
we have observed that a36(6) = 0 and a36(4) = 0 have no intersection within the 
whole region R36. On the other hand, if a36(6) = 0, then either a36(1) = 0 or 
a36(2) = 0 can happen. The point (0,36162432,34721684154) provides an example 
which corroborates their result that 6 is a possible exception. The example using 
the above point is as follows: 

1 + 36162432 q2 + 34721684154 q3 + 4528422612000 q4 

(14) + 370666892907720 q5 + 2044900385895305412 q7 

+ 213293766887630083440 q8 + ... 

Note that the point (0, 36162432,34721684154) lies inside the intersection of R36 
with a36(1) < 10224. The intersection region is given in Theorem 5.1. 

5.4. Dimension 80. As mentioned earlier, the point (0,0,0) corresponds to the 
following extremal theta series: 

(15) 
1 + 1250172000 q4 + 7541401190400 q5 + 9236514405888000 q6 + 

Considering the faces of the region R40, and using the fact that a40(1) < 12640, 
we note that the only planes to be considered are a40(1) > 0, a4O(2) > 0, a40(3) > 0, 
a4O(5) > 0, a40(7) > 0 and the plane a40(1) < 12640. Using these planes one gets 
a bounded region in W3 (which, of course, is a subset of the region R40 obtained in 
Theorem 3.2 which determines the theta series in this case (i.e., for which a4O(1) ? 
12640), denoted by R040, whose vertices are given in Theorem 5.1. 

We also observe that a4O(7) = 0 does not intersect with R040 at any lattice point. 
It seems that there are several lattice points at which a40(1) - 0 and a4O(5) = 0 
a40(2) = 0 and a40(5) = 0 intersect. The examples are given below. 

The modular form corresponding to the point (0,3888,614383616) is 

1 + 3888 q2 + 614383616 q3 + 105073240800 q4 
(16) + 9485305949851200 q6 + 3766184235926519808 q7 + 

and that corresponding to (32,0,692941200) is 

1 + 32 q + 692941200 q3 + 118281610976 q4 

+ 9971027410950144 q6 + 3821440153157783200 q7 + 

We conclude that 

(18) T8o C {1,2,3,5}. 

5.5. Dimension 88. The point (0,0,0) gives the following extremal theta series: 

(19) 
1 + 168498000 q4 + 2480127344640 q5 + 6298997202432000 q6 + 

The theta bound is a44(1) < 15312. Like in the previous case, the region R044, 
which determines the theta series is obtained by the following planes a44 (1) > 0, 
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a44(2) > 0, a44(3) > 0, a44(6) > 0, a44(8) > 0 and the plane a44(1) < 15312. The 
region R044 in RW3 is described by its vertices in Theorem 5.1 

Though a44(8) = 0 is involved in determining the theta region, it does not 
intersect with any lattice point in the region. On the other hand, a44(1) = 0 and 
a44 (6) = 0 ; a44 (2) = 0 and a44 (6) = 0 have intersections with (possibly) many 
lattice points. We will give some examples below. 

The modular form corresponding to the point (0, 235008,4482334086) is 

1 + 235008 q2 + 4482334086 q3 + 1843123327200 q4 

(20) + 156784934734200 q5 + 5163935354086047228 q7 + ... 

and that corresponding to the point (1284,0,13884968796) is 

1 + 1284 q + 13884968796 q3 + 5670311737200 q4 
(21) + 444535383648744 q5 + 12234602633705590296 q7 ? 

We can now conclude that 

(22) T88 C {1,2,3,6}. 

In the following theorem, we give the vertices of the theta regions for the above 
three cases. 

Theorem 5.1. The vertices of the theta regions ROk, for k = 36,40,44 are given 
below (till 4 places of decimal). 

R036 = {(0, 0,0), (0,0,86363550), (0,45760226.5708,0), (10224,0, 0), 

(0, 26202334.8495, 70754060639.13), (10224,0,8193582046), 

(10224,340217404.1854,0), (10224,193612838.52,530367407534.3437)}; 

R040 = {(0, 0,0), (0,0, 596818707.6923), (0,137219474.3535,0), (12640,0,0), 

(12640, 938218697.7658,0), (12640,0,38565203169.2308), 

(0,62133345.6593,281298083974.2577), 

(12640,420655108.6645, 1938968601537.1154)}; 

R044 = {(0, 00 0), (0, 0, 2774634395.8051), (0, 720080843.2055,0), (15312,0,0), 

(15312,4716227066.9582,0), (15312,0,135267967990.6522), 

(0,172072043.2049,1253146429706.0514), 

(15312,1114742540.0899,8235611319530.06)}. 

Remark 5.4. A view of the theta region R044 (where the nonzero entries are scaled 
to logarithms to the base 10) is given in Figure 2. 

5.6. Dimension 96. As mentioned earlier the point (0,0,0,0) corresponds to the 
extremal theta series and is given by 

(23) 
1 + 565866362880 q5 + 2972108280960000 q6 + 4164608980546560000 q7 ? .7 

Examining the region R48 together with the fact that a48(1) < 18240, it follows 
that the only hyperplanes to be considered are a48(i) > 0, i 1, 2, 3,4, 5, 7, 9,10. 
Of these, a48(9) = 0 and a48(10) = 0 have no integer solutions for which a48(1) < 

18240 holds. The examples for the exceptions 5 and 7 are given by the points 
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4/ , 27 . 

2 2FGUE 

1 a gIven as folos 

(24) 
I + 5894441280 q 4 + 2998421066833920 q 6+ 4163820540080947200 q 7 

+ 2214108303283082606400 q8* 

(25) 
1 + 139216 q2 + 14628704256 q3 + 2819801455167488 q5 + 50313952102979520 q6 

+ 2340778665780864018752 q8 + 

Thus we can conclude that 

(26) T96 9 *{1,2,3 4I5,7}. 

5.7. Dimension 104. First we will give the extremal theta series corresponding 
to the point (0, 0, 0, 0) given by 

(27) 
1 + 91508901120 q5 + 1000989-033408000 q6 + 2598412027506048000 q7 + . 

In this case the intersection of R52 with a52 (1) ? 21424, which is the theta bound, 
is given by the hyperplanes a52 (i) ?: 0 for i = 1, 2,3, 4,6, 8, 11 and a52 (1) K 21424. 
It turns out that a52 (8) = 0 has no integer points within the above intersection. On 
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the other hand, a52(6) = 0 and a52(11) = 0 meet both a52(1) = 0 and a52(3) = 0. 
The points 

(0,176,0,61392071210) and (0,10226341170,0,3421557772412480) 

provide the above examples which are given as follows: 

(28) 
1 + 176 q2 + 61392071210 q4 + 8936030463136 q5 + 2646041231718049664 q7 

+ 2355670193686679378944 q8 + 

(29) 
1 + 10226341170 q2 + 3421557772412480 q4 + 728799703895900160 q5 

+ 340289802570745622520 q6 + 141143564585883328839680 q7 

+ 14278746426172898992300080 q8 + 513768402318552455404584960 q9 

+ 5632618326414854488471195420 q10 + 1659754425886884680776487919360 q12 

Thus we have established the following 

(30) T104 C_ {1,2,3,4,6,11} . 

5.8. Dimension 112. In this case the theta bound is a56(1) < 24864. The in- 
tersection of R56 with the above theta bound is determined by the hyperplanes 
a56(i) > 0 for i = 1, 2,3,4,7,9,13 and a56(1) < 24864. Surprisingly a56(i) = 0 does 
not contain any integer solution within the above intersection for i = 7,9 and 13. 
However, the extremal theta series corresponding to the point (0,0,0,0) is given by 
the following 

(31) 
1 + 10888335360 q5 + 247006775232000 q6 + 1187911731935232000 q7 

+ 1837981772066610324000 q8 + 1195996575532999166976000 q9 + * 

and hence we conclude that 

(32) T112 C {1,2,3,4}. 

For the cases 48 < k < 56, the intersection of the region Rk and the theta bound 
ak(l) < 4k(2k - 1), which determines the theta series, denoted by ROk, is described 
in the following theorem. 
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Theorem 5.2. The vertices of the theta regions ROk for k = 48,52 and 56 are 
given below (till 2 places of decimal). 

R048 = {(0, 0, 0, 0), (0, 0,0, 5894441280), (18240,0,0,0), 

(0,0,12614144664.75,0), (0,3601816952.37,0,0) 

(0,0,6964566561.77,13944603843854.61), 

(0,3322024322.88,48084789484013.79,0), (18240,10648632684.22,0,0), 

(18240,0,0,1459597604100), (18240,0,497484492799.86, 0), 

(18240,0, 274398365105.19, 550633625566510.44), 

(0,1016441408.97,7983281454886.97,16631106800143051.34), 

(0,3338965322.77,48093210771703.07,584304379350694.12), 

(18240,10851560256.94,0,6978897092842250.04), 

(18240,9818966810.89,142585274438314.78,0), 

(18240,11835294977.10,143587581249066.18,69544264557157929.33), 

(18240,15721580248.04,9124369598956.39,192723120061352710.98), 

(18240,6482452166.70,51144121143672.27,106528172648557419.64)}; 

R052 = {(0, 0,0,0), (0,0,0, 60976427473.68), (21424,0, 0,0), 

(0,0,39444111190.24,0), (0,10148246959.65,0, 0), 

(0,0,18863892686.74,60901994524500.01), 

(0,4785626155.20,112401071188911.52,0), 

(21424,0,1324844283433.62, 0), (21424,0, 0,11060702100568.42), 

(21424,32008124692.88, 0, 0), (0,10726422165.82, 0, 25331709762254341.85), 

(0,15262003594.92,165652531174434.16,570315999727721311.20), 

(21424,0,6.32140973570.78,2049881694754144.18), 

(21424,33831983038.20,0,79909082503073183.67), 

(21424,15067112985.54,355085308539255.31,0), 

(21424,4.8159872916.59,523295912960355.89,1801513029902004325.15)}; 

R056 = {(0, 0,0, 0), .(0,0,0,411737373812.95), (24864,0, 0,0), 

(0,0,107704808659.76,0), (0,4825805535.56,0,0), 

(0,0,46137170678.58,229817154206183.53), 

(0,47871219805.95,0,323099945047827426.23), 

(0,65839375988.63,2483815260738911.22,0), (24864, 96190731207.35,0,0), 

(24864,0,3202149087039.08,0), (24864, 0,0, 58180356733205.82), 

(0,48708626693.12, 750199216594397.32,4058927835430575857.01), 

(24864,0,1366417232008.17,685234458625464.33), 

(24864,95419600219.03,0,644078291488442190.06), 

(24864,131263680466.63,4954959210855910.32,0), 

(24864, 97090214081.45,1496635900684609.96, 8096997483949549504.52)}. 
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APPENDIX A. ON NORMALIZED MODULAR FORMS OF WEIGHTS 20,24,28 AND 32 
WITH NON-NEGATIVE INTEGRAL FOURIER COEFFICIENTS 

by 

M. MANICKAM AND B. RAMAKRISHNAN 

In this appendix, we determine exactly the number of modular forms of weight k, 
(41k), for the group SL2(Z), which behave like theta series for the cases 20 < k < 32. 

We will first prove the following main lemma. 

Lemma A.1. Let dim Mk (1) = m. Then we can find a basis {f ((Z) = 0a(n)q= h 
0 < K < m-1} for Mk(1) such that ae(n) E Zfor alln > 0 K K < f < m-1 and 
ae(j) = 8,j, 0 < Xj < m - 1, where 8,j is the Kronecker delta function. 

Further, if f(z) = E'LO af(n)qn E Mk(1) is such that af(n) E Z for 0 < n < 
m - 1, then af (n) C Z for all n > 0. 

Proof. Let gi(T) = En bi(n)qn (1 < i < m - 1) be a basis of Sk(l) such that all 
the bi(n)'s are integers and bi(j) = 8ij. (See [1, Chapter X, Theorem 4.4].) 

Set 

(E4(z)k/4 if k 0,4,8 (mod 12), 
) - E14(z)E4(z)(k-l4)/4 if k 2 (mod 12), 

1 E6(z)k/6 if k 6 (mod 12), 

E1o (z)E4 (z) (k-10)/4 if k 10 (mod 12). 

Then g(z) = En>0 b(n)qn E Mk(1) such that all the b(n)'s are integers. Clearly, 

{gg91 g9m-1} form a basis of Mk(1). Now to find the required basis, put 

m-1 

fo(z) g(z) - b(i)gi (z) and f (z) = gi (z) (1 < i < m -1). 
i=1 

It follows that {fo, fi, ,If.-I } is the required basis of Mk (1). The remaining 
part of the lemma is now clear since f(z) = Z l1 af (i)fi(z). a 

A.1. The case k = 20. We know that the space M20(1) is spanned by E20(z) 
and A(z)E4(z). Let q(z) = En>0 a(n)qn be a modular form in M20(1) which has 
constant term unity and all other Fourier coefficients are integers; i.e., a(O) = 1 and 
a(1) = X (say) with X(> 0) E Z. Then Lemma A.1 implies that all the a(n)'s are 
integers. a(n) can be written as 

(33) a(n) = 283 617 (19(n) - b(n)) + b(n)X, 

where A(z)E4(z) = En>, b(n)q. 
Using the Ramanujan-Petersson estimate (proved by Deligne) for b(n) (i.e., 

lb(n)l ?< V3-n1), one can prove from (33) that a(n) > 0 if and only if a(4) > 0 and 
X > 0. Since a(4) > 0 and X > 0 imply 0 < X < 65686, we have the following: 
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Theorem A.2. The number of modular forms in M20(1) which behave like theta 
series is 65687. 

A.2. The cases k = 24,28,32. In these cases dimMk(1) = 3. The space Mk(l) is 
spanned by Ek (Z), A(z)Ek-12(z) and A2(z)Ek-24(Z)- 

Let 
00 

Ek(Z) = 1 + Ak E Jfk-1(n)q , 

(34) 00 7n=i 

A2(z)Ek-12i(z) = Eai,k(n)qn (i = 1,2). 
rn=Z 

Let Ok(Z) = 1 + Zn=i akj(n)qfn E Mk(1) be such that 

(35) ak(n) > 0; ak(n) E Z for all n > 1. 

Then our problem is to find all qk (Z) satisfying (35). 
Letting ak(i) = Xk,i E Z, 1 < i < 2, we get 

2 

(36) ak(n) = AkBkr(n) + E Z i,kr(n)Xk,i, 
i=l 

where al,k(n) = al,k(n) - al,k(2)a2,k(n) E Z and a2,k(n) = a2,k(n) E Z and Bk(n) 
is defined by 

(37) Bk(n) = Jk-1(n)- 0-k-1(2)a2,k(n) - a,,k(n) 

Since ak(i) = Xk,t E Z, 1 < i < 2, and ak(O) = 1, from Lemma A.1 we see that 
ak(n) E Z for all n > 0. This implies that AkBk(n) E Z. 

Using (35) and (36) we get the following bounds for Xk,i, 

(38) 0 < Xk,i < ?ki, 

where Ikj are given in the table below. 

k Ik,1 Ik,2 

(39) 24 901973 3117528477 
28 3053422 22151903688 
32 12066084 151617872159 

Let 9k (Z) E Sk (1) be a normalized Hecke eigenform. Then using the Ramanujan 
- Petersson estimate proved by Deligne, we have 

(40) |bk(n) I < \- nk/2n 

where 9k (Z) = Z?=1 bk((n)qn. 
Expressing A(z)Ek-12(z) and A2(z)Ek-24(z) as a linear combination of the basis 

elements 9i, k(z), 1 < i < 2, which are normalized Hecke eigenforms in Sk (1), and 
using (40) we get estimates for the Fourier coefficients aj,k(n) as follows. 

(41) aaik(n)| < nlk ink/2 
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where 

k 24 k 28 k 32 

(42) 1k,1 2.74 11k,1 5.57 11k,1 3.84 

ktk,2 3.8 x 10-4 .k,2 1.96 x 10-4 kk,2 3.37 x 10-9 

Using the bounds from the table (39) and the estimate (41), we can prove that 
ak(n) > 0 for all n except for the following cases: 

(k, n) E {(24,3),(24,5), (24,6); (28,4), (28,7), (28,8); (32,5), (32,9), (32, 10)}. 

We have thus the following theorem. 

Theorem A.3. ak(n) > 0 if and only if ak(ik) > O where 

1,2,3,5,6 if k= 24, 
Zk = < 1,2,4,7,8 if k = 28, 

1 2,5,9,10 if k = 32. 

The following theorem is obtained using the Simplex method for solving a Linear 
Programming problem following the present work in the paper. 

Theorem A.4. ak (ik) > 0 and ak(ik) E Z, where ik is as in Theorem A. 3, if and 
only if Xki (1 < i < 2) belong to the following convex region, denoted by Rk, in 
R2 given by the following vertices: 

R24 = {(0, 0), (0,1092000), (395935.3361,1615023413.7759), 

(901973.05768614149406,3117528477.5604), (445623.6915, 0)}; 

R28 = {(0, 0), (0,4463440.4348), (3004644.4353,22151903688.7315), 

(3053422.7929,5108328206.416), (2378265.7383, 0)}; 

R32 = {(0, 0), (0,13898141.4518), (11533050.8143,151617872159.7915), 

(12066084.8402,107182839332.9432), (8056296.7887, 0)}. 

In the above, the vertices are given till 4 places of decimal. 

Remark A. 1. Noticing that to each lattice point in the region Rk one gets a modular 
form which behaves like a theta series, the number of modular forms in Mk(1) which 
behave like theta series, denoted by N(k), can be obtained and we give below the 
numbers. 

N(24) = 806022416212942, 

(43) N(28) = 32642069239095156, 

N(32) = 566165632956673500. 

Remark A.2. A view of the convex region R24 (X coordinates scaled down by 100 
and the Y coordinates scaled in logarithms for the nonzero entries) is given in 
Figure A. 
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